CHAPTER 23 ESTIMATION Q e o701

SAFEHOME

[All nod.] s
Doug: Hovewoenr
project before? :

Doug {irying to suppress
; cﬁdﬂm happen? you're telling me is: {1} we're ab
" moffshoredwelopef It unknown vendor, (2] the cosis o
. they seem, (3)wereda ,

The software project planner must estimate three things before a project begins: how
long it will take, how much effort will be required, and how many people will be in-
volved. In addition, the planner must predict the resources (hardware and software)
that will be required and the risk involved.

The statement of scope helps the planner develop estimates using one or more
techniques that fall into two broad categories: decomposition and empirical modeling.

702

PART FOUR MANAGING SOFTWARE PROJECTS

Decomposition techniques require a delineation of major software functions, followed
by estimates of either (1) the number of LOC, (2) selected values within the informa-
tion domain, (3) the number of use-cases, (4) the number of person-months required
to implement each function, or (5) the number of person-months required for each
software engineering activity. Empirical techniques use empirically derived expres-
sions for effort and time to predict these project quantities. Automated tools can be
used to implement a specific empirical model.

Accurate project estimates generally use at least two of the three techniques just
noted. By comparing and reconciling estimates derived using different techniques,
the planner is more likely to derive an accurate estimate. Software project estima-
tion can never be an exact science, but a combination of good historical data and
systematic techniques can improve estimation accuracy.

[BEN92] Bennatan, E. M., Software Project Management: A Practitioner’s Approach, McGraw-Hill,
1992.

[BENO3] Bennatan, E. M., ""So What Is the State of Software Estimation?” The Cutter Edge (an
online newsletter), February 11, 2003, available from http:// www.cutter.com.

[BOE81] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981.

[BOE89] Boehm, B., Risk Management, IEEE Computer Society Press, 1989.

[BOE96] Boehm, B., “Anchoring the Software Process,” IEEE Software, vol. 13, no. 4, July 1996,
pp. 73-82.

[BOEO00] Boehm, B, et al., Software Cost Estimation in COCOMO II, Prentice-Hall, 2000.

[BRO75] Brooks, F., The Mythical Man-Month, Addison-Wesley, 1975.

[GAU89] Gause, D. C., and G. M. Weinberg, Exploring Requirements: Quality Before Design, Dorset
House, 1989.

[HOO91] Hooper, J., and R. O. Chester, Software Reuse: Guidelines and Methods, Plenum Press, 1991.

[JON96] Jones, C., “How Software Estimation Tools Work,” American Programmer, vol. 9, no. 7,
July 1996, pp. 19-27.

[LOR94] Lorenz, M., and J. Kidd, Object-Oriented Software Metrics, Prentice-Hall, 1994.

[MAT94] Matson, J., B. Barrett, and J. Mellichamp, “Software Development Cost Estimation Using
Function Points,” IEEE Trans. Software Engineering, vol. SE-20, no. 4, April 1994, pp. 275-287.

[MCC98] McConnell, S., Software Project Survival Guide, Microsoft Press, 1998.

[MENO1] Mendes, E., N. Mosley, and S. Counsell, “Web Metrics—Estimating Design and Author-
ing Effort,” IEEE Multimedia, January-March 2001, pp. 50-57.

[MIN95] Minoli, D., Analyzing Outsourcing, McGraw-Hill, 1995.

[PHI98] Phillips, D., The Software Project Manager's Handbook, IEEE Computer Society Press, 1998.

[PUT78] Putnam, L., “A General Empirical Solution to the Macro Software Sizing and Estimation
Problem,” IEEE Trans. Software Engineering, Vol SE-4, No. 4, July 1978, pp. 345-361.

[PUT92] Putnam, L., and W. Myers, Measures for Excellence, Yourdon Press, 1992.

[PUT97a} Putnam, L., and W. Myers, “How Solved Is the Cost Estimation Problem?” IEEE Soft-
ware, November 1997, pp. 105-107.

[PUT97b] Putnam, L., and W. Myers, Industrial Strength Software: Effective Management Using
Measurement, IEEE Computer Society Press, 1997.

[ROEOO] Roetzheim, W., “Estimating Internet Development,” Software Development, August 2000,
available at http://www.sdmagazine.com/documents/s=741/ sdm0008d/0008d.htm.

[SMI99] Smith, J., “The Estimation of Effort Based on Use Cases,” Rational Software Corp., 1999,
download from http://www.rational.com/media/whitepapers/ finalTP171.PDF.

CHAPTER 23 ESTIMATION 703

23.1. Performance is an important consideration during planning. Discuss how performance can
be interpreted differently depending upon the software application area.

23.2. Assume that you are the project manager for a company that builds software for house-
hold robots. You have been contracted to build the software for a robot that mows the lawn for
a homeowner. Write a statement of scope that describes the software. Be sure your statement
of scope is bounded. If you're unfamiliar with robots, do a bit of research before you begin writ-
ing. Also, state your assumptions about the hardware that will be required. Alternate: Replace
the lawn mowing robot with another robotics problem that is of interest to you.

23.3. Software project complexity influences estimation accuracy. Develop a list of software
characteristics (e.g., concurrent operation, graphical output) that affect the complexity of a proj-
ect. Prioritize the list.

23.4. Do a functional decomposition of the robot software you described in Problem 23.2. Es-
timate the size of each function in LOC. Assuming that your organization produces 450 LOC/pm
with a burdened labor rate of $7,000 per person-month, estimate the effort and cost required to
build the software using the LOC-based estimation technique described in this chapter.

23.5. Use the COCOMO 11 model to estimate the effort required to build software for a simple
ATM that produces 12 screens, 10 reports, and will require approximately 80 software compo-
nents. Assume average complexity and average developer/environment maturity. Use the ap-
plication composition model with object points.

23.6. It seems odd that cost and schedule estimates are developed during software project
planning—before detailed software requirements analysis or design has been conducted. Why
do you think this is done? Are there circumstances when it should not be done?

23.7. Use the software equation to estimate the lawn mowing robot software from Problem
23.2. Assume that Equations (23-5) are applicable and that P = 8000.

23.8. Compare the effort estimates derived in Problems 23.4 and 23.7. What is the standard de-
viation, and how does it affect your degree of certainty about the estimate?

23.9. Using the results obtained in Problem 23.8, determine whether it's reasonable to expect
that the software can be built within the next six months and how many people would have to
be used to get the job done.

23.11. Develop a spreadsheet model that implements one or more of the estimation tech-
niques described in this chapter. Alternatively, acquire one or more on-line models for software
project estimation from Web-based sources.

23.10. For a project team, develop a software tool that implements each of the estimation tech-
niques developed in this chapter.

23.12. Recompute the expected values noted for the decision tree in Figure 23.8 assuming that
every branch has a 50-50 probability. Would this change your final decision?

Most software project management books contain discussions of project estimation. The Project
Management Institute (PMBOK Guide, PMI, 2001), Wysoki and his colleagues (Effective Project
Management, Wiley, 2000), Lewis (Project Planning Scheduling and Control, third edition, McGraw-
Hill, 2000), Bennatan (On Time, Within Budget: Software Project Management Practices and Tech
niques, third edition, Wiley, 2000), and Phillips [PHI98] provide useful estimation guidelines.

704

PART FOUR MANAGING SOFTWARE PROJECTS

Jones (Estimating Software Costs, McGraw-Hill, 1998) has written one of the most compre-
hensive treatments of the subject published to date. His book contains models and data that are
applicable to software estimating in every application domain. Coombs (IT Project Estimation,
Cambridge University Press, 2002), Roetzheim and Beasley (Software Project Cost and Schedule
Estimating: Best Practices, Prentice-Hall, 1997), and Wellman (Software Costing, Prentice-Hall,
1992) present many useful models and suggest step-by-step guidelines for generating the best
possible estimates.

Putnam and Myer’s detailed treatment of software cost estimating ([PUT92] and [PUT97b])
and Boehm's books on software engineering economics ([BOE81] and COCOMO 1l [BOEOQO]) de-
scribe empirical estimation models. These books provide detailed analysis of data derived from
hundreds of software projects. An excellent book by DeMarco (Controlling Software Projects,
Yourdon Press, 1982) provides valuable insight into the management, measurement, and esti-
mation of software projects. Lorenz and Kidd (Object-Oriented Software Metrics, Prentice-Hall,
1994) and Cockburn (Surviving Object-Oriented Projects, Addison-Wesley, 1998) consider esti-
mation for object-oriented systems.

A wide variety of information sources on software estimation is available on the Internet. An
up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

&

/

Key
CONCEPTS
basic prindiples
latoness <
corned value
offort distribution
people and effort
PNR corve

fask network
task refinement
time-boxing
timeline charts

tracking
work breakdown

n the late 1960s, a bright-eyed young engineer was chosen to “write” a com-
puter program for an automated manufacturing application. The reason for
his selection was simple. He was the only person in his technical group who
had attended a computer programming seminar. He knew the ins and outs of as-
sembly language and FORTRAN but nothing about software engineering and even
less about project scheduling and tracking. :
His boss gave him the appropriate manuals and a verbal descnpuon of what had
to be done. He was informed that the project must be completed in two months.
He read the manuals, considered his approach, and began writing code. After
two weeks, the boss called him into his office and asked how things were going.
“Really great,” said the young engineer with youthful enthusiasm, “This was
much simpler than I thought. 'm probably close to 75 percent finished.”
The boss smiled and encouraged the young engineer to keep up the good work.
They planned to meet again in a week’s time.
A week later the boss called the engineer into his office and asked, “Where
are we?” ,
“Everything's going well,” said the youngster, “but I've run into a few small
snags. I'll get them ironed out and be back on track soon.”
“How does the deadline look?” the boss asked.

705

706

PART FOUR MANAGING SOFTWARE PROJECTS

“No problem,” said the engineer. “I'm close to 90 percent complete.”

If you've been working in the software world for more than a few years, you can
finish the story. It'll come as no surprise that the young engineer' stayed 90 percent
complete for the entire project duration and finished (with the help of others) only
one month late.

This story has been repeated tens of thousands of times by software developers
during the past four decades. The big question is why?

.

Although there are many reasons why software is delivered late, most can be traced
to one or more of the following root causes:

¢ An unrealistic deadline established by someone outside the software engi-
neering group and forced on managers and practitioners within the group.

o Changing customer requirements that are not reflected in schedule changes.

e An honest underestimate of the amount of effort and/or the number of
resources that will be required to do the job.

e Predictable and/or unpredictable risks that were not considered when the
project commenced.

e Technical difficulties that could not have been foreseen in advance.
e Human difficulties that could not have been foreseen in advance.

e Miscommunication among project staff that results in delays.

e A failure by project management to recognize that the project is falling
behind schedule and a lack of action to correct the problem.

Aggressive (read “unrealistic”) deadlines are a fact of life in the software business.
Sometimes such deadlines are demanded for reasons that are legitimate, from the
point of view of the person who sets the deadline. But common sense says that le-
gitimacy must also be perceived by the people doing the work.

1 In case you were wondering, this story is autobiographical.

What should
we do when
management
demands that we
make a deadline
that is
impossible?

CHAPTER 24 PROJECT SCHEDULING 707

Napoleon once said: “Any commander-in-chief who undertakes to carry out a
plan which he considers defective is at fault; he must put forth his reasons, insist on
the plan being changed, and finally tender his resignation rather than be the instru-
ment of his army’s downfall.” These are strong words that many software project
managers should ponder.

The estimation activities discussed in Chapter 23 and the scheduling techniques
described in this chapter are often implemented under the constraint of a defined
deadline. If best estimates indicate that the deadline is unrealistic, a competent proj-
ect manager should “protect his or her team from undue {schedule} pressure . .. [and]
reflect the pressure back to its originators” [PAG8S5].

To illustrate, assume that a software engineering team has been asked to build a
real-time controller for a medical diagnostic instrument that is to be introduced to
the market in nine months. After careful estimation and risk analysis (Chapter 25),
the software project manager comes to the conclusion that the software, as re-
quested, will require 14 calendar months to create with available staff. How does the
project manager proceed?

pdioes. | e th whooshing sound they ke s thy fyby”

It is unrealistic to march into the customer’s office (in this case the likely customer
is marketing/sales) and demand that the delivery date be changed. External market
pressures have dictated the date, and the product must be released. It is equally fool-
hardy to refuse to undertake the work (from a career standpoint). So, what to do?
The following steps are recommended in this situation:

1. Perform a detailed estimate using historical data from past projects. Deter-
mine the estimated effort and duration for the project.

2. Using an incremental process model (Chapter 3), dévelop a software engi-
neering strategy that will deliver critical functionality by the imposed dead-
line, but delay other functionality until later. Document the plan.

3. Meet with the customer and (using the detailed estimate), explain why the
imposed deadline is unrealistic. Be certain to note that all estimates are
based on performance on past projects. Also be certain to indicate the per-
cent improvement that would be required to achieve the deadline as it cur-
rently exists.? The following comment is appropriate:

“I think we may have a problem with the delivery date for the XYZ controller
software. I've given each of you an abbreviated breakdown of production rates

2 Ifthe required improvement is 10 to 25 percent, it may actually be possible to get the job done. But,
more likely, the required improvement in team performance will be greater than 50 percent. This
is an unrealistic expectation.

708

PART FOUR MANAGING SOFTWARE PROJECTS

for past projects and an estimate that we've done a number of different ways.
You'll note that I've assumed a 20 percent improvement in past production
rates, but we still get a delivery date that’s 14 calendar months rather than 9
months away.”

4. Offer the incremental development strategy as an alternative:

“We have a few options, and Id like you to make a decision based on them.
First, we can increase the budget and bring on additional resources so that
we'll have a shot at getting this job done in nine months. But understand that
this will increase risk of poor quality due to the tight timeline.®> Second, we can
remove a number of the software functions and capabilities that you're re-
questing. This will make the preliminary version of the product somewhat less
functional, but we can announce all functionality and then deliver over the 14
month period. Third, we can dispense with reality and wish the project com-
plete in nine months. We'll wind up with nothing that can be delivered to a cus-
tomer. The third option, 1 hope you'll agree, is unacceptable. Past history and
our best estimates say that it is unrealistic and a recipe for disaster.”

There will be some grumbling, but if solid estimates based on good historical data
are presented, it’s likely that negotiated versions of option 1 or 2 will be chosen. The
unrealistic deadline evaporates.

cnwa‘

The tasks required fo
achieve a project
manager’s objective
should not be
performed manually.
There are many
excellent scheduling
tools. Use them.

Fred Brooks, the well-known author of The Mythical Man-Month [BRO95], was once
asked how software projects fall behind schedule. His response was as simple as it
was profound: “One day at a time.”

The reality of a technical project (whether it involves building a hydroelectric plant
or developing an operating system) is that hundreds of small tasks must occur to ac-
complish a larger goal. Some of these tasks lie outside the mainstream and may be
completed without worry about impact on project completion date. Other tasks lie
on the “critical path.” If these “critical” tasks fall behind schedule, the completion
date of the entire project is put into jeopardy.

The project manager’s objective is to define all project tasks, build a network that
depicts their interdependencies, identify the tasks that are critical within the net-
work, and then track their progress to ensure that delay is recognized “one day at a
time.” To accomplish this, the manager must have a schedule that has been defined
at a degree of resolution that allows progress to be monitored and the project to be
controlled.

3 You might also add that increasing the number of people does not reduce calendar time propor-
tionally.

>
e,
POINT
When you develop
a schedule,
compartmentalize
the work, note task
interdependencies,
allocate effort and
time to each task,
define responsibilities,
outcomes, and
milestones.

CHAPTER 24 PROJECT SCHEDULING 709

Software project scheduling is an activity that distributes estimated effort across
the planned project duration by allocating the effort to specific software engineering
tasks. It is important to note, however, that the schedule evolves over time. During
early stages of project planning, a macroscopic schedule is developed. This type of
schedule identifies all major process framework activities and the product functions
to which they are applied.' As the project gets under way, each entry on the macro-
scopic schedule is refined into a detailed schedule. Here, specific software tasks (re-
quired to accomplish an activity) are identified and scheduled.

Mﬂg doesn't result in shorter actuol schedules, it results in longer ones.”

Scheduling for software engineering projects can be viewed from two rather dif-
ferent perspectives. In the first, an end-date for release of a computer-based system
has already (and irrevocably) been established. The software organization is con-
strained to distribute effort within the prescribed time frame. The second view of
software scheduling assumes that rough chronological bounds have been discussed
but that the end-date is set by the software engineering organization. Effort is dis-
tributed to make best use of resources and an end-date is defined after careful analy-
sis of the software. Unfortunately, the first situation is encountered far more
frequently than the second.

24.2.1 Basic Principles

Like all other areas of software engineering, a number of basic principles guide soft-
ware project scheduling:

Compartmentalization. The project must be compartmentalized into a number of
manageable activities, actions, and tasks. To accomplish compartmentalization,
both the product and the process are decomposed.

Interdependency. The interdependency of each compartmentalized activity, ac-
tion, or task must be determined. Some tasks must occur in sequence while others
can occur in parallel. Some actions or activities cannot commence until the work
product produced by another is available. Other actions or activities can occur in-
dependently.

Time allocation. Each task to be scheduled must be allocated some number of
work units (e.g., person-days of effort). In addition, each task must be assigned a
start date and a completion date that are a function of the interdependencies and
whether work will be conducted on a full-time or part-time basis.

Effort validation. Every project has a defined number of people on the software
team. As time allocation occurs, the project manager must ensure that no more
than the allocated number of people have been scheduled at any given time. For
example, consider a project that has three assigned software engineers (e.g., three

710

CovaP

If you must add peaple
o a late project, be
sure that you've
assigned them work
that is highly compart:
mentolized.

PART FOUR MANAGING SOFTWARE PROJECTS

person-days are available per day of assigned effort?). On a given day, seven con-
current tasks must be accomplished. Each task requires 0.50 person days of effort.
More effort has been allocated than there are people to do the work.

Defined responsibilities. Every task that is scheduled should be assigned to a spe-
cific team member.

Defined outcomes. Every task that is scheduled should have a defined outcome. For
software projects, the outcome is normally a work product (e.g., the design of a mod-
ule) or a part of a work product. Work products are often combined in deliverables.

Defined milestones. Every task or group of tasks should be associated with a
project milestone. A milestone is accomplished when one or more work products
has been reviewed for quality (Chapter 26) and has been approved.

Each of these principles is applied as the project schedule evolves.

24.2.2 The Relationship Between People and Effort

In a small software development project a single person can analyze requirements,
perform design, generate code, and conduct tests. As the size of a project increases,
more people must become involved. (We can rarely afford the luxury of approaching
a 10 person-year effort with one person working for 10 years!)

There is a common myth that is still believed by many managers who are re-
sponsible for software development effort: “If we fall behind schedule, we can always
add more programmers and catch up later in the project.” Unfortunately, adding
people late in a project often has a disruptive effect on the project, causing sched-
ules to slip even further. The people who are added must learn the system, and the
people who teach them are the same people who were doing the work. During teach-
ing, no work is done, and the project falls further behind.

In addition to the time it takes to learn the system, more people increase the num-
ber of communication paths and the complexity of communication throughout a
project. Although communication is absolutely essential to successful software de-
velopment, every new communication path requires additional effort and therefore
additional time.

Over the years, empirical data and theoretical analysis have demonstrated that
project schedules are elastic. That is, it is possible to compress a desired project com-
pletion date (by adding additional resources) to some extent. It is also possible to ex-
tend a completion date (by reducing the number of resources).

The Putnam-Norden-Rayleigh (PNR) Curve® provides an indication of the relationship
between effort applied and delivery time for a software project. A version of the curve,

4 In reality, less than three person-days of effort are available because of unrelated meetings, sick-
ness, vacation, and a variety of other reasons. For our purposes, however, we assume 100 percent
availability.

5 Original research can be found in [NOR70] and {PUT78].

CHAPTER 24 PROJECT SCHEDULING 711

w The relationship between effort and delivery time

Effort
cost
; Eq= m (164/14)
impossible | E, = effort in person-months
region 1 t4 = nominal delivery time for schedule
| t, = optimal development time (in terms of cost)
E ! t, = actual delivery time desired
d
|
|
|
E |
o ! I
/ tq to Development time
Toin = 0.75T,

%
POINT

If delivery can be

deloyed, the PNR curve

indicates that project

costs can be reduced

substantially.

Gpwc:‘

As the project deadline
becomes fighter and
tighter, you reach a
point at which the
work connot be
completed on
schedule, regardless of
the number of peaple
doing the work. Foce
reality and define @
new delivery date.

representing project effort as a function of delivery time, is shown in Figure 24.1. The
curve indicates a minimum value, t,, that indicates the least cost time for delivery (i.e.,
the delivery time that will result in the least effort expended). As we move left of ¢, (i.e.,
as we try to accelerate delivery), the curve rises nonlinearly.

As an example, we assume that a project team has estimated a level of effort, E,,
will be required to achieve a nominal delivery time, ¢, that is optimal in terms of sched-
ule and available resources. Although it is possible to accelerate delivery, the curve
rises very sharply to the left of ¢,. In fact, the PNR curve indicates that the project de-
livery time cannot be compressed much beyond 0.75 t,. If we attempt further com-
pression, the project moves into “the impossible region” and risk of failure becomes
very high. The PNR curve also indicates that the lowest cost delivery option, t, = 2 t;.
The implication here is that delaying project delivery can reduce costs significantly. Of
course, this must be weighed against the business cost associated with the delay.

The software equation [PUT92] introduced in Chapter 23 is derived from the PNR
curve and demonstrates the highly nonlinear relationship between chronological
time to complete a project and human effort applied to the project. The number of
delivered lines of code (source statements), L, is related to effort and development
time by the equation:

L=PX El/3t4/3

where E is development effort in person-months, P is a productivity parameter that
reflects a variety of factors that lead to high-quality software engineering work (typ-
ical values for P range between 2000 and 12,000), and ¢ is the project duration in cal-
endar months.

Rearranging this software equation, we can arrive at an expression for develop-
ment effort E:

E = L3/(P3t% (24-1)

712

0 How should
effort be
distributed across
the software

process
workflow?

PART FOUR MANAGING SOFTWARE PROJECTS

where E is the effort expended (in person-years) over the entire life cycle for software
development and maintenance, and ¢ is the development time in years. The equation
for development effort can be related to development cost by the inclusion of a bur-
dened labor rate factor ($/person-year).

This leads to some interesting results. Consider a complex, real-time software
project estimated at 33,000 LOC, 12 person-years of effort. If eight people are as-
signed to the project team, the project can be completed in approximately 1.3 years.
If, however, we extend the end-date to 1.75 years, the highly nonlinear nature of the
model described in Equation (24-1) yields:

E = L3/(P3t* ~ 3.8 person-years.

This implies that, by extending the end-date six months, we can reduce the number
of people from eight to four! The validity of such results is open to debate, but the
implication is clear: benefit can be gained by using fewer people over a somewhat
longer time span to accomplish the same objective.

24.2.3 Effort Distribution

Each of the software project estimation techniques discussed in Chapter 23 leads to
estimates of work units (e.g., person-months) required to complete software devel-
opment. A recommended distribution of effort across the software process is often
referred to as the 40-20-40 rule. Forty percent of all effort is allocated to front-end
analysis and design. A similar percentage is applied to back-end testing. You can cor-
rectly infer that coding (20 percent of effort) is deemphasized.

This effort distribution should be used as a guideline only.® The characteristics of
each project must dictate the distribution of effort. Work expended on project plan-
ning rarely accounts for more than 2-3 percent of effort, unless the plan commits an
organization to large expenditures with high risk. Requirements analysis may com-
prise 10-25 percent of project effort. Effort expended on analysis or prototyping
should increase in direct proportion with project size and complexity. A range of 20
to 25 percent of effort is normally applied to software design. Time expended for de-
sign review and subsequent iteration must also be considered.

Because of the effort applied to software design, code should follow with rela-
tively little difficulty. A range of 15-20 percent of overall effort can be achieved. Test-
ing and subsequent debugging can account for 30-40 percent of software
development effort. The criticality of the software often dictates the amount of test-
ing that is required. If software is human rated (i.e., software failure can result in loss
of life), even higher percentages are typical.

6 Today, the 40-20-40 rule is under attack. Some believe that more than 40 percent of overall effort
should be expended during analysis and design. On the other hand, some proponents of agile de-
velopment (Chapter 4) argue that less time should be expended “up front” and that a team should
move quickly to construction.

CHAPTER 24 PROJECT SCHEDULING 713

’ WebRef

Ao

A number of different process models were described in Part 1 of this book. Regard-
less of whether a software team chooses a linear sequential model, an incremental
model, an evolutionary model, or some permutation, the process model is populated
by a set of tasks that enables a software team to define, develop, and ultimately sup-
port computer software.

No single task set is appropriate for all projects. The set of tasks that would be ap-
propriate for a large, complex system would likely be perceived as overkill for a
small, relatively simple software product. Therefore, an effective software process
should define a collection of task sets, each designed to meet the needs of different
types of projects.

As we noted in Chapter 2, a task set is a collection of software engineering work
tasks, milestones, and work products that must be accomplished to complete a par-
ticular project. The task set should provide enough discipline to achieve high soft-
ware quality. But, at the same time, it must not burden the project team with
unnecessary work.

To develop a project schedule, a task set must be distributed on the project time
line. The task set will vary depending upon the project type and the degree of rigor
with which the software team decides to do its work. Although it is difficult to de-
velop a comprehensive taxonomy of software project types, most software organi-
zations encounter the following projects:

1. Concept development projects that are initiated to explore some new business
concept or application of some new technology.

2. New application development projects that are undertaken as a consequence
of a specific customer request.

3. Application enhancement projects that occur when existing software under-
goes major modifications to function, performance, or interfaces that are ob-
servable by the end-user.

4. Application maintenance projects that correct, adapt, or extend existing soft-
ware in ways that may not be immediately obvious to the end-user.

5. Reengineering projects that are undertaken with the intent of rebuilding an
existing (legacy) system in whole or in part.

Even within a single project type, many factors influence the task set to be chosen.
These include [PRE99]: size of the project, number of potential users, mission criti-
cality, application longevity, stability of requirements, ease of customer/developer
communication, maturity of applicable technology, performance constraints, em-
bedded and nonembedded characteristics, project staff, and reengineering factors.
When taken in combination, these factors provide an indication of the degree of rigor
with which the software process should be applied.

714

PART FOUR MANAGING SOFTWARE PROJECTS

24.3.1 A Task Set Example

Each of the project types described may be approached using a process model that is
linear sequential, iterative (e.g., the prototyping or incremental models), or evolu-
tionary (e.g., the spiral model). In some cases, one project type flows smoothly into
the next. For example, concept development projects that succeed often evolve into
new application development projects. As a new application development project
ends, an application enhancement project sometimes begins. This progression is both
natural and predictable and will occur regardless of the process model that is adopted
by an organization. Therefore, the major software engineering tasks described in the
sections that follows are applicable to all process model flows. As an example, we
consider the software engineering tasks for a concept development project.

Concept development projects are initiated when the potential for some new
technology must be explored. There is no certainty that the technology will be ap-
plicable, but a customer (e.g., marketing) believes that potential benefit exists. Con-
cept development projects are approached by applying the following major tasks:

1.1 Concept scoping determines the overall scope of the project.

1.2 Preliminary concept planning establishes the organization’s ability to
undertake the work implied by the project scope.

1.3 Technology risk assessment evaluates the risk associated with the tech-
nology to be implemented as part of project scope.

1.4 Proof of concept demonstrates the viability of a new technology in the
software context.

1.5 Concept implementation implements the concept representation in a
manner that can be reviewed by a customer and is used for “marketing”
purposes when a concept must be sold to other customers or management.

1.6 Customer reaction to the concept solicits feedback on a new technology
concept and targets specific customer applications.
A quick scan of these tasks should yield few surprises. In fact, the software engi-
neering flow for concept development projects (and for all other types of projects as
well) is little more than common sense.

24.3.2 Refinement of Major Tasks

The major tasks described in the preceding section may be used to define a macro-
scopic schedule for a project. However, the macroscopic schedule must be refined to
create a detailed project schedule. Refinement begins by taking each major task and
decomposing it into a set of subtasks (with related work products and milestones).

As an example of task decomposition, consider Task 1.1, Concept Scoping. Task
refinement can be accomplished using an outline format, but in this book, a
process design language approach is used to illustrate the flow of the concept
scoping activity:

CHAPTER 24 PROJECT SCHEDULING 715

Task definition: Task 1.1 Concept 8coping
LL1 Identify need, benefits and potential customers:
1.1.2 Define desired output/control and input events that drive the application:
Begin Task 1.1.2
L1.2.1 FIR: Review written description of need’
1.1.2.2 Derive a list of customer visible outputs/inputs
1.1.2.3 FIR: Review outputs/inputs with customer and revise as required;
endtask Task 1.1.2
1.1.3 Define the functionality/behavior for each major function;
Begin Task 1.1.3
LL3.1 FTR: Review output and input data objects derived in task 1.1.2;
1.1.3.2 Derive a model of functions/behaviors;
1.1.8.8 FTR: Review functions/behaviors with customer and revise as required;
endtask Task 1.1.3
1.1.4 Isolate those elements of the technology to be implemented in software;
LLE Research availability of existing software;
1.1.8 Define technical feasibility;
11.7 Make quick estimate of size:
L1.8 Create a 8cope Definition;
endTask definition: Task 1.1

The tasks and subtasks noted in the process design language refinement form the
basis for a detailed schedule for the concept scoping activity.

%
POINT
The task netwaork is o
useful mechanism for

depicting infertask
dependencies and
determining the critical
path.

Individual tasks and subtasks have interdependencies based on their sequence. In
addition, when more than one person is involved in a software engineering project,
it is likely that development activities and tasks will be performed in parallel. When
this occurs, concurrent tasks must be coordinated so that they will be complete when
later tasks require their work product(s).

A task network, also called an activity network, is a graphic representation of the
task flow for a project. It is sometimes used as the mechanism through which task
sequence and dependencies are input to an automated project scheduling tool. In its
simplest form (used when creating a macroscopic schedule), the task network de-
picts major software engineering tasks. Figure 24.2 shows a schematic task network
for a concept development project.

The concurrent nature of software engineering activities leads to a number of im-
portant scheduling requirements. Because parallel tasks occur asynchronously, the
planner must determine intertask dependencies to ensure continuous progress

7 FTRindicates that a formal technical review (Chapter 26) is to be conducted.

716 PART FOUR MANAGING SOFTWARE PROJECTS

m A task network for concept development

Three 1.5 tasks are
/applied in parallel to

3 different concept
functions

toward completion. In addition, the project manager should be aware of those tasks
that lie on the critical path. That is, tasks that must be completed on schedule if the
project as a whole is to be completed on schedule. These issues are discussed in
more detail later in this chapter. .

It is important to note that the task network shown in Figure 24.2 is macroscopic.
In a detailed task network (a precursor to a detailed schedule), each activity shown
in the figure would be expanded. For example, Task 1.1 would be expanded to show
all tasks detailed in the refinement of Tasks 1.1 shown in Section 24.3.2.

Scheduling of a software project does not differ greatly from scheduling of any mul-
titask engineering effort. Therefore, generalized project scheduling tools and tech-
niques can be applied with little modification for software projects.

Program evaluation and review technique (PERT) and the critical path method (CPM)
are two project scheduling methods that can be applied to software development.
Both techniques are driven by information already developed in earlier project plan-
ning activities:

o Estimates of effort.
e A decomposition of the product function.
o The selection of the appropriate process model and task set.
e Decomposition of tasks.
Interdependencies among tasks may be defined using a task network. Tasks, some-

times called the project work breakdown structure (WBS), are defined for the product
as a whole or for individual functions.

CHAPTER 24 PROJECT SCHEDULING 717

whetto do with the fime thet s givenfous.” -
Gondalf in The Lord of the

Both PERT and CPM provide quantitative tools that allow the software planner to
(1) determine the critical path—the chain of tasks that determines the duration of the
project; (2) establish “most likely” time estimates for individual tasks by applying sta-
tistical models; and (3) calculate “boundary times” that define a time “window” for a
particular task.

Project Scheduling

N -4
Obijective: The objective of project scheduling Representative Tools®

tools is to enable a project manager fo define AMS Realtime, developed by Advanced Management

work tasks, establish their dependencies, assign human Systems (www.amsusa.com), provides scheduling
resources fo tasks, and develop a variety of graphs, capabilities for projects of all sizes and types.
charts, and tables that aid in tracking and control of the Microsoft Project, developed by Microsoft

software project. {www.microsoft.com), is the most widely used PC-
Mechanics: In general, project scheduling tools require based project scheduling '°°_I') i

the specification of a work breakdown structure or the Viewpoint, deve|oped' by Artemis lnterfmtwn Solufions
generation of a task network. Once the task breakdown COT‘ (www.?renrlspm.f:om), supports all aspects of
(an outline} or network is defined, start and end dates, project planning including scheduling.

human resources, hard deadlines, and other data are A comprehensive list of project management software
attached to each task. The tool then generates a variety of o/ dors and products can be found at

timeline charts and other tables that enable a manager to
assess the task flow of a project. These data can be
Qdated continually as the project is conducted.

www.infogoal.com/pmc/pmcswr.htm.

J

24.5.1 Timeline Charts

When creating a software project schedule, the planner begins with a set of tasks (the
work breakdown structure). If automated tools are used, the work breakdown is in-
put as a task network or task outline. Effort, duration, and start date are then input
for each task. In addition, tasks may be assigned to specific individuals.

:ﬁ“ . As a consequence of this input, a timeline chart, also called a Gantt chart, is gen-
erated. A timeline chart can be developed for the entire project. Alternatively, sepa-

A mﬂr rate charts can be developed for each project function or for each individual working

enug}e;n:o;; on the project.

determine what tasks Figure 24 .3 illustrates the format of a timeline chart. It depicts a part of a soft-

willbe conductedata ware project schedule that emphasizes the concept scoping task for a word-pro-

given point in fime. cessing (WP) software product. All project tasks (for concept scoping) are listed in

8 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

718 PART FOUR MANAGING SOFTWARE PROJECTS

m An example timeline chcrt

Work tasks Week 1 Week 2 Week 3 Week 4 Week 5

1.1.1 Identify needs and benefits

Meet with customers

Identify needs and project constraints

Establish product statement

Milestone: Product statement defined
1.1.2 Define desired output/control/input (OCl)

Scope keyboard functions

Scope voice input functions

Scope modes of inferaction

Scope document diagnosis

Scope other WP functions

Document OCI

FTR: Review OC! with customer

Revise OCI as required

Milestone: OCI defined
1.1.3 Define the function/behavior

Define keyboard functions

Define voice input functions

Describe modes of interaction

Describe spell/grammar check

Describe other WP functions

FTR: Review OC! definition with customer

Revise as required B

Milestone: OC! definition complete 0
1.1.4 1isolafion software elements

Milestone: Software elements defined
1.1.5 Research availability of existing software
R h text editing comp :

R h voice input comp

Research file management components

Research spell/grammar check components

Milestone: Reusable components identified
1.1.6 Define technical feasibility

Evaluate voice input

Evaluate grammar checking

Milestone: Technical feasibility assessed
1.1.7 Make quick estimate of size
1.1.8 Create a scope definition m

Review scope document with customer i

I

Revise document as required
Milestone: Scope document complete

the left-hand column. The horizontal bars indicate the duration of each task. When
multiple bars occur at the same time on the calendar, task concurrency is implied.
The diamonds indicate milestones.

Once the information necessary for the generation of a timeline chart has been in-
put, the majority of software project scheduling tools produce project tables—a tabular
listing of all project tasks, their planned and actual start- and end-dates, and a variety
of related information (Figure 24.4). Used in conjunction with the timeline chart, proj-
ect tables enable the project manager to track progress.

24.5.2 Tracking the Schedule

The project schedule provides a road map for a software project manager. If it has
been properly developed, the project schedule defines the tasks and milestones that
must be tracked and controlled as the project proceeds. Tracking can be accom-
plished in a number of different ways:

o Conducting periodic project status meetings in which each team member
reports progress and problems.

CHAPTER 24 PROJECT SCHEDULING 719

M An example resource table

Cova

The best indication of
progress is the comple-
tion and successful
review of o defined
software work product.

e Evaluating the results of all reviews conducted throughout the software engi-
neeriny process.

¢ Determining whether formal project milestones (the diamonds shown in
Figure 24.3) have been accomplished by the scheduled date.

o Comparing actual start-date to planned start-date for each project task listed
in the resource table (Figure 24.4).

e Meeting informally with practitioners to obtain their subjective assessment of
progress to date and problems on the horizon.

e Using earned value analysis (Section 24.6) to assess progress quantitatively.

In reality, all of these tracking techniques are used by experienced project managers.

afsuﬂwa ware status reporting can be summarized in a single phrase: Nem

Control is employed by a software project manager to administer project re-
sources, cope with problems, and direct project staff. If things are going well (i.e.,
the project is on schedule and within budget, reviews indicate that real progress is
being made, and milestones are being reached), control is light. But when prob-
lems occur, the project manager must exercise control to reconcile them as quickly
as possible. After a problem has been diagnosed, additional resources may be fo-
cused on the problem area: staff may be redeployed or the project schedule can be
redefined.

720

PART FOUR MANAGING SOFTWARE PROJECTS

When faced with severe deadline pressure, experienced project managers some-
times use a project scheduling and control technique called time-boxing [ZAH95].
The time-boxing strategy recognizes that the complete product may not be deliver-
able by the predefined deadline. Therefore, an incremental software paradigm
(Chapter 3) is chosen and a schedule is derived for each incremental delivery.

The tasks associated with each increment are then time-boxed. This means that
the schedule for each task is adjusted by working backward from the delivery date
for the increment. A “box" is put around each task. When a task hits the boundary of
its time box (plus or minus 10 percent), work stops and the next task begins.

The initial reaction to the time-boxing approach is often negative: If the work
isn't finished, how can we proceed? The answer lies in the way work is accom-
plished. By the time the time-box boundary is encountered, it is likely that 90 per-
cent of the task has been completed.® The remaining 10 percent, although
important, can (1) be delayed until the next increment or (2) be completed later if
required. Rather than becoming “stuck” on a task, the project proceeds toward the
delivery date.

24.5.3 Tracking Progress for an OO Project

Although an iterative model is the best framework for an OO project, task parallelism
makes project tracking difficult. The project manager can have difficulty establishing
meaningful milestones for an OO project because a number of different things are
happening at once. In general, the following major milestones can be considered
“completed” when the criteria noted have been met.

Technical milestone: OO analysis completed
o All classes and the class hierarchy have been defined and reviewed.

o Class attributes and operations associated with a class have been defined
and reviewed.

e Class relationships (Chapter 8) have been established and reviewed.
e A behavioral model (Chapter 8) has been created and reviewed.

o Reusable classes have been noted.

Technical milestone: OO design completed

e The set of subsystems (Chapter 9) has been defined and reviewed.

e Classes are allocated to subsystems and reviewed.

o Task allocation has been established and reviewed.

o Responsibilities and collaborations (Chapters 8 and 9) have been identified.

9 A cynic might recall the saying: The first 90 percent of the system takes 90 percent of the time; the
remaining 10 percent of the system takes 90 percent of the time.

Cova$

Debugging and testing
occur in concert with
one another. The
status of debugging is
often assessed by
considering the fype
and number of “open”
errors (bugs).

CHAPTER 24 PROJECT SCHEDULING 721

¢ Design classes have been created and reviewed.

e The communication model has been created and reviewed. -
Technical milestone: OO programming completed

e Each new class has been implemented in code from the design model.
e Extracted classes (from a reuse library) have been implemented.

e Prototype or increment has been built.

Technical milestone: OO testing

e The correctness and completeness of OO analysis and design models has
been reviewed.

o A class-responsibility-collaboration network (Chapter 8) has been developed
and reviewed.

e Test cases are designed, and class-level tests (Chapter 14) have been
conducted for each class.

o Test cases are designed, and cluster testing (Chapter 14) is completed and the
classes are integrated. :

e System level tests have been completed.

Recalling that the OO process model is iterative, each of these milestones may be re-
visited as different increments are delivered to the customer.

SAFEHOME

722

o
o,
POINT
Earned value provides
a quantitafive
indication of progress.

#’ compute
earned value and
use it to assess

progress?

PART FOUR MANAGING SOFTWARE PROJECTS

In Section 24.5, we discussed a number of qualitative approaches to project tracking.
Each provides the project manager with an indication of progress, but an assessment
of the information provided is somewhat subjective. It is reasonable to ask whether
there is a quantitative technique for assessing progress as the software team moves
through the work tasks allocated to the project schedule. In fact, a technique for per-
forming quantitative analysis of progress does exist. It is called earned value analysis
(EVA). Humphrey [HUM95] discusses earned value in the following manner:

The earned value system provides a common value scale for every [software project]
task, regardless of the type of work being performed. The total hours to do the whole proj-
ect are estimated, and every task is given an earned value based on its estimated per-
centage of the total.

Stated even more simply, earned value is a measure of progress. It enables us to as-
sess the “percent of completeness” of a project using quantitative analysis rather
than rely on a gut feeling. In fact, Fleming and Koppleman [FLE98] argue that earned
value analysis “provides accurate and reliable readings of performance from as early
as 15 percent into the project.”

To determine the earned value, the following steps are performed:

1. The budgeted cost of work scheduled (BCWS) is determined for each work task
represented in the schedule. During estimation, the work (in person-hours or
person-days) of each software engineering task is planned. Hence, BCWS; is
the effort planned for work task i. To determine progress at a given point
along the project schedule, the value of BCWS is the sum of the BCWS; values
for all work tasks that should have been completed by that point in time on
the project schedule.

2. The BCWS values for all work tasks are summed to derive the budget at com-
pletion, BAC. Hence,

BAC = X (BCWS,) for all tasks k

3. Next, the value for budgeted cost of work performed (BCWP) is computed. The
value for BCWP is the sum of the BCWS values for all work tasks that have
actually been completed by a point in time on the project schedule.

Wilkens [WIL99] notes that “the distinction between the BCWS and the BCWP is that the
former represents the budget of the activities that were planned to be completed and
the latter represents the budget of the activities that actually were completed.” Given
values for BCWS, BAC, and BCWP, important progress indicators can be computed:

Schedule performance index, SPI = BCWP/BCWS
Schedule variance, SV = BCWP — BCWS

Awide aray of somed
value analysis
resources can be found
of

wil/pm/,

CHAPTER 24 PROJECT SCHEDULING 723

SPI is an indication of the efficiency with which the project is utilizing scheduled re-
sources. An SPI value close to 1.0 indicates efficient executior. of the project sched-
ule. SV is simply an absolute indication of variance from the planned schedule.

Percent scheduled for completion = BCWS/BAC

provides an indication of the percentage of work that should have been completed
by time t.

Percent complete = BCWP/BAC

provides a quantitative indication of the percent of completeness of the project at a
given point in time, ¢. ‘

It is also possible to compute the actual cost of work performed, ACWP. The value
for ACWP is the sum of the effort actually expended on work tasks that have been
completed by a point in time on the project schedule. It is then possible to compute

Cost performance index, CPI = BCWP/ACWP
Cost variance, CV = BCWP — ACWP

A CPI value close to 1.0 provides a strong indication that the project is within its de-
fined budget. CV is an absolute indication of cost savings (against planned costs) or
shortfall at a particular stage of a project.

Like over-the-horizon radar, earned value analysis illuminates scheduling diffi-
culties before they might otherwise be apparent. This enables the software project
manager to take corrective action before a project crisis develops.

Scheduling is the culmination of a planning activity that is a primary component of
software project management. When combined with estimation methods and risk
analysis, scheduling establishes a road map for the project manager.

Scheduling begins with process decomposition. The characteristics of the project
are used to adapt an appropriate task set for the work to be done. A task network de-
picts each engineering task, its dependency on other tasks, and its projected dura-
tion. The task network is used to compute the critical path, a timeline chart and a
variety of project information. Using the schedule as a guide, the project manager
can track and control each step in the software process.

[BRO95] Brooks, M., The Mythical Man-Month, anniversary edition, Addison-Wesley, 1995.

[FLE98] Fleming, Q. W., and J. M. Koppelman, “Earned Value Project Management,” Crosstalk,
vol. 11, no. 7, July 1998, p. 19.

[HUM95] Humphrey, W., A Discipline for Software Engineering, Addison-Wesley, 1995.

[NOR70] Norden, P, “Useful Tools for Project Management,” in Management of Production,
M. K. Starr, ed., Penguin Books, 1970.

724

PART FOUR MANAGING SOFTWARE PROJECTS

[PAG85] Page-Jones, M., Practical Project Management, Dorset House, 1985, pp. 90-91.

[PRE99] Pressman, R. S., Adaptable Process Model, R. S. Pressman & Associates, 1999.

[PUT78] Putnam, L., “A General Empirical Solution to the Macro Software Sizing and Estimation
Problem,” IEEE Trans. Software Engineering, vol SE-4, no. 4, July 1978, pp. 345-361.

[PUT92] Putnam, L., and W. Myers, Measures for Excellence, Yourdon Press, 1992,

[WIL99] Wilkens, T. T., “Earned Value, Clear and Simple,” Primavera Systems, April 1, 1999, p. 2.

[ZAH95] Zahniser, R., “Time-boxing for Top Team Performance,” Software Development, March
1995, pp. 34-38.

24.1. Assume that you have been contracted by a university to develop an on-line course reg-
istration system (OLCRS). First, act as the customer (if you're a student, that should be easy!)
and specify the characteristics of a good system. (Alternatively, your instructor will provide you
with a set of preliminary requirements for the system.) Using the estimation methods discussed
in Chapter 23, develop an effort and duration estimate for OLCRS. Suggest how you would:

a. Define parallel work activities during the OLCRS project.
b. Distribute effort throughout the project.
c. Establish milestones for the project.

24.2. Is there ever a case where a software project milestone is not tied to a review? If so, pro-
vide one or more examples.

24.3. Using a scheduling tool (if available) or paper and pencil (if necessary), develop a time-
line chart for the OLCRS project.

24.4. The relationship between people and time is highly nonlinear. Using Putnam'’s software
equation (described in Section 24.2.2), develop a table that relates number of people to project
duration for a software project requiring 50,000 LOC and 15 person-years of effort (the produc-
tivity parameter is 5000). Assume that the software must be delivered in 24 months plus or mi-
nus 12 months.

24.5. Although adding people to a late software project can make it later, there are circum-
stances in which this is not true. Describe them.

24.6. Select an appropriate task set for the OLCRS project.

24.7. "Unreasonable” deadlines are a fact of life in the software business. How should you pro-
ceed if you're faced with one?

24.8. “Communication overhead” can occur when multiple people work on a software project.
The time spent communicating with others reduces individual productivity (LOC/person-month),
and the result is less productivity for the team. Illustrate (quantitatively) how engineers who are
well-versed in good software engineering practices and use formal technical reviews can increase
the production rate of a team (when compared to the sum of individual production rates). Hint: You
can assume that reviews reduce rework and that rework can account for 20-40 percent of a per-
son’s time.

24.9. Define a task network for OLCRS, or alternatively, for another software project that in-
terests you. Be sure to show tasks and milestones and to attach effort and duration estimates to
each task. If possible, use an automated scheduling tool to perform this work.

24.10. If an automated scheduling tool is available, determine the critical path for the network
defined in Problem 24.9.

24.11. What is the difference between a macroscopic schedule and a detailed schedule. Is it pos-
sible to manage a project if only a macroscopic schedule is developed? Why?

CHAPTER 24 PROJECT SCHEDULING

24.12. Assume you are a software project manager and that you've been asked to compute
earned value statistics for a small software project. The project has 56 planned work tasks that
are estimated to require 582 person-days to complete. At the time that you've been asked to do
the earned value analysis, 12 tasks have been completed. However the project schedule indi-
cates that 15 tasks should have been completed. The following scheduling data (in person-days)
are available:

Task Planned Effort Actual Effort
1 12.0 125
2 15.0 11.0
3 13.0 17.0
4 8.0 95
5 9.5 9.0
6 18.0 19.0
7 10.0 10.0
8 40 45
9 12.0 10.0

10 6.0 6.5
1 5.0 4.0
12 14.0 145
13 16.0 —
14 6.0 —
15 8.0 —

Compute the SPI, schedule variance, percent scheduled for completion, percent complete,
CPI, and cost variance for the project.

Virtually every book written on software project management contains a discussion of sched-
uling. The Project Management Institute (PMBOK Guide, PMI, 2001), Wysoki and his colleagues
(Effective Project Management, Wiley, 2000), Lewis (Project Planning Scheduling and Control, third
edition, McGraw-Hill, 2000), Bennatan (On Time, Within Budget: Software Project Management
Practices and Techniques, third edition, Wiley, 2000), McConnell (Software Project Survival Guide,
Microsoft Press, 1998), and Roetzheim and Beasley (Software Project Cost and Schedule Estimat-
ing: Best Practices, Prentice-Hall, 1997) contain worthwhile discussions of the subject. Boddie
(Crunch Mode, Prentice-Hall, 1987) has written a book for all managers who “have 90 days to
do a six-month project.”

McConnell (Rapid Development, Microsoft Press, 1996) presents an excellent discussion of
the issues that lead to overly optimistic software project scheduling and what you can do about
it. O'Connell (How to Run Successful Projects II: The Silver Bullet, Prentice-Hall, 1997) presents a
step-by-step approach to project management that will help you develop a realistic schedule for
your projects.

Webb and Wake (Using Earned Value: A Project Manager's Guide, Ashgate Publishing, 2003)
and Fleming and Koppelman (Earned Value Project Management, Project Management Institute
Publications, 1996) discuss the use of earned value techniques for project planning, tracking,
and control in considerable detail.

A wide variety of information sources on software project scheduling is available on the In-
ternet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

Key
CONCEPTS

assessment
identification
projection
refinement
principles
proactive strategy
reactive strategy
risk categories

risk exposure
risk table

RMMM
safety and hazerds

{

\\;7;

Risk
MANAGEMENT

n his book on risk analysis and management, Robert Charette [CHA89]
presents a conceptual definition of risk:

First, risk concerns future happenings. Today and yesterday are beyond active con-
cern, as we are already reaping what was previously sowed by our past actions. The
question is, can we, therefore, by changing our actions today, create an opportunity
for a different and hopefully better situation for ourselves tomorrow. This means, sec-
ond, that risk involves change, such as in changes of mind, opinion, actions, or places
... [Third,] risk involves choice, and the uncertainty that choice itself entails. Thus par-
adoxically, risk, like death and taxes, is one of the few certainties of life.

When risk is considered in the context of software engineering, Charette’s three
conceptual underpinnings are always in evidence. The future is our concern—
what risks might cause the software project to go awry? Change is our concern—
how will changes in customer requirements, development technologies, target
environments, and all other entities connected to the project affect timeliness and
overall success? Last, we must grapple with choices—what methods and tools
should we use, how many people should be involved, how much emphasis on
quality is “enough”?

Peter Drucker [DRU75] once said, “While it is futile to try to eliminate risk, and
questionable to try to minimize it, it is essential that the risks taken be the right risks.”
Before we can identify the “right risks” to be taken during a software project, it is im-
portant to identify all risks that are obvious to both managers and practitioners.

726

CHAPTER 25 RISK MANAGEMENT 727

Reactive risk strategies have been laughingly called the “Indiana Jones school of risk
management” [THO92]. In the 1980s-era movies that carried his name, Indiana
Jones, when faced with overwhelming difficulty, would invariably say, “Don’t worry,
I'll think of something!” Never worrying about problems until they happened, indy
would react in some heroic way.

y lmod(the risks, they will actively attack you.”

Sadly, the average software project manager is not Indiana jones, and the mem-
bers of the software project team are not his trusty sidekicks. Yet, the majority of
software teams rely solely on reactive risk strategies. At best, a reactive strategy
monitors the project for likely risks. Resources are set aside to deal with them,
should they become actual problems. More commonly, the software team does
nothing about risks until something goes wrong. Then, the team flies into action in
an attempt to correct the problem rapidly. This is often called a fire-fighting mode.
When this fails, “crisis management” [CHA92] takes over and the project is in real
jeopardy.

A considerably more intelligent strategy for risk management is to be proactive.
A proactive strategy begins long before technical work is initiated. Potential risks are
identified, their probability and impact are assessed, and they are ranked by impor-
tance. Then, the software team establishes a plan for managing risk. The primary ob-
jective is to avoid risk, but because not all risks can be avoided, the team works to
develop a contingency plan that will enable it to respond in a controlled and effec-
tive manner. Throughout the remainder of this chapter, we discuss a proactive strat-
egy for risk management.

728

PART FOUR MANAGING SOFTWARE PROJECTS

What types

of risks are
we likely to
encounter as

software is built?

Although there has been considerable debate about the proper definition for software
risk, there is general agreement that risk always involves two characteristics [HIG95]:

o Uncertainty—the risk may or may not happen; that is, there are no 100%
probable risks.!

o Loss—if the risk becomes a reality, unwanted consequences or losses will
occur. '

When risks are analyzed, it is important to quantify the level of uncertainty and the
degree of loss associated with each risk. To accomplish this, different categories of
risks are considered.

Project risks threaten the project plan. That is, if project risks become real, it is
likely that project schedule will slip and that costs will increase. Project risks identify
potential budgetary, schedule, personnel (staffing and organization), resource,
stakeholder, and requirements problems and their impact on a software project. In
Chapter 23, project complexity, size, and the degree of structural uncertainty were
also defined as project (and estimation) risk factors.

Technical risks threaten the quality and timeliness of the software to be produced.
If a technical risk becomes a reality, implementation may become difficult or impos-
sible. Technical risks identify potential design, implementation, interface, verifica-
tion, and maintenance problems. In addition, specification ambiguity, technical
uncertainty, technical obsolescence, and “leading-edge” technology are also risk fac-
tors. Technical risks occur because the problem is harder to solve than we thought
it would be.

Business risks threaten the viability of the software to be built. Business risks of-
ten jeopardize the project or the product. Candidates for the top five business risks
are (1) building an excellent product or system that no one really wants (market risk),
(2) building a product that no longer fits into the overall business strategy for the
company (strategic risk), (3) building a product that the sales force doesn’t under-
stand how to sell (sales risk), (4) losing the support of senior management due to a
change in focus or a change in people (management risk), and (5) losing budgetary
or personnel commitment (budget risk).

It is extremely important to note that simple risk categorization won't always
work. Some risks are simply unpredictable in advance.

Another general categorization of risks has been proposed by Charette [CHA89].
Known risks are those that can be uncovered after careful evaluation of the project
plan, the business and technical environment in which the project is being devel-
oped, and other reliable information sources (e.g., unrealistic delivery date, lack of
documented requirements or software scope, poor development environment). Pre-

1 Arisk that is 100 percent probable is a constraint on the software project.

CHAPTER 25 RISK MANAGEMENT 729

dictable risks are extrapolated from past project experience (e.g., staff turnover, poor
communication with the customer, dilution of staff effort as ongoing maintenance
requests are serviced). Unpredictable risks are the joker in the deck. They can and do

occur, but they are extremely difficult to identify in advance.

The Software Engineering Institute {SEI)
(www.sei.cmu.edu) identifies seven principles
that “provide a framework to accomplish effective risk
management.” They are:

Maintain a global perspective—view software
risks within the context of system in which it is a
component and the business problem that it is
infended to solve.

Take a forward-looking view—think about the risks
that may arise in the future (e.g., due to changes in the
software); establish contingency plans so that future
events are manageable.

Encourage open communication—if someone
states a potential risk, don’t discount it. If a risk is
proposed in an informal manner, consider it.

Seven Principles of Risk Management

an,

Encourage all stakeholders and users to suggest risks
at any time.

Integrate—a consideration of risk must be integrated
into the software process.

Emphasize a continuous process—the team must
be vigilant throughout the software process, modifying
identified risks as more information is known and
adding new ones as better insight is achieved.

Develop a shared product vision—if all
stakeholders share the same vision of the software, it is
likely that better risk identification and assessment will
oceur.

Encourage teamwork—the talents, skills and
knowledge of all stakeholders should be pooled when
risk management activities are conducted.

Risk identification is a systematic attempt to specify threats to the project plan (esti-
mates, schedule, resource loading, etc.). By identifying known and predictable risks,
the project manager takes a first step toward avoiding them when possible and con-
trolling them when necessary.

There are two distinct types of risks for each of the categories that have been pre-
sented in Section 25.2: generic risks and product-specific risks. Generic risks are a
potential threat to every software project. Product-specific risks can be identified only
by those with a clear understanding of the technology, the people, and the environ-
ment that is specific to the software that is to be built. To identify product-specific
risks, the project plan and the software statement of scope are examined, and an an-
swer to the following question is developed: “What special characteristics of this
product may threaten our project plan?”

ts with no real risks are losers. They are almost always devoid of benefit; that's why they weren't ¢

Tom DeMarco cad Tim

o

730

Cova$

Although generic risks
are important fo
consider, it's the
productspecific risks
that cause the most
headaches. Be certain
to spend the time fo
identify as many
productspecific risks
as possible.

% Is the
software

project we're
working on at
serious risk?

PART FOUR MANAGING SOFTWARE PROJECTS

One method for identifying risks is to create a risk item checklist. The checklist
can be used for risk identification and focuses on some subset of known and pre-
dictable risks in the following generic subcategories:

e Product size—risks associated with the overall size of the software to be built
or modified.

e Business impact—risks associated with constraints imposed by management
or the marketplace.

e Customer characteristics—risks associated with the sophistication of the
customer and the developer'’s ability to communicate with the customer in a
timely manner.

e Process definition—risks associated with the degree to which the software
process has been defined and is followed by the development organization.

e Development environment—risks associated with the availability and quality
of the tools to be used to build the product.

e Technology to be built—risks associated with the complexity of the system to
be built and the “newness” of the technology that is packaged by the system.

e Staff size and experience—risks associated with the overall technical and
project experience of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to
each of the topics can be answered for each software project. The answers to these
questions allow the planner to estimate the impact of risk. A different risk item
checklist format simply lists characteristics that are relevant to each generic subcat-
egory. Finally, a set of “risk components and drivers” [AFC88] are listed along with
their probability of occurrence. Drivers for performance, support, cost, and schedule
are discussed in answer to later questions.

A number of comprehensive checklists for software project risk have been pro-
posed in the literature (e.g., [SEI93], [KARY6]). These provide useful insight into
generic risks for software projects and should be used whenever risk analysis and
management are instituted. However, a relatively short list of questions [KEI98] can
be used to provide a preliminary indication of whether a project is “at risk.”

25.3.1 Assessing Overall Project Risk

The following questions have been derived from risk data obtained by surveying ex-
perienced software project managers in different parts of the world [KEI98]. The
questions are ordered by their relative importance to the success of a project.

1. Have top software and customer managers formally committed to support
the project?

2. Are end-users enthusiastically committed to the project and the
system/product to be built?

deﬁn :
dotobase and tools that
hely maniges dnty,
ok, and communicrte
profec ks I can e
fondat.

CHAPTER 25 RISK MANAGEMENT 731

3. Are requirements fully understood by the software engineerirfg team and its
customers?

Have customers been involved fully in the definition of requirements?
Do end-users have realistic expectations?
Is project scope stable?

Does the software engineering team have the right mix of skills?

Are project requirements stable?

© @ N AR

Does the project team have experience with the technology to be imple-
mented?

10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of the project
and on the requirements for the system/product to be built?

project management for adults.”

If any one of these questions is answered negatively, mitigation, monitoring, and man-
agement steps should be instituted without fail. The degree to which the project is at
risk is directly proportional to the number of negative responses to these questions.

25.3.2 Risk Components and Drivers

The U.S. Air Force [AFC88] has written a pamphlet that contains excellent guidelines
for software risk identification and abatement. The Air Force approach requires that
the project manager identify the risk drivers that affect software risk components—
performance, cost, support, and schedule. In the context of this discussion, the risk
components are defined in the following manner:

e Performance risk—the degree of uncertainty that the product will meet its
requirements and be fit for its intended use.

e Cost risk—the degree of uncertainty that the project budget will be main-
tained.

e Support risk—the degree of uncertainty that the resultant software will be
easy to correct, adapt, and enhance.

e Schedule risk—the degree of uncertainty that the project schedule will be
maintained and that the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four impact

‘categories—negligible, marginal, critical, or catastrophic. Referring to Figure 25.1

[BOE89], a characterization of the potential consequences of errors (rows labeled 1) or
a failure to achieve a desired outcome (rows labeled 2) are described. The impact cat-
egory is chosen based on the characterization that best fits the description in the table.

732

PART FOUR MANAGING SOFTWARE PROJECTS

Impact assess-
ment [BOE89]

iSomamduchm e ;M.;mzfrdﬂlq sin &mﬂw}agoof
in iél:‘i‘micd "} software e o ﬁnaﬂc»b‘ msout'ces :

Note: (1) The potential consequence of undetected software errors or faults.
(2) The potential consequence if the desired outcome is not achieved.

Risk projection, also called risk estimation, attempts to rate each risk in two ways—
(1) the likelihood or probability that the risk is real and (2) the consequences of the
problems associated with the risk, should it occur. The project planner, along with
other managers and technical staff, performs four risk projection steps:

Establish a scale that reflects the perceived likelihood of a risk.

Delineate the consequences of the risk.

Estimate the impact of the risk on the project and the product.

W N o=

Note the overall accuracy of the risk projection so that there will be no mis-
understandings.

The intent of these steps is to consider risks in a manner that leads to prioritization.
No software team has the resources to address every possible risk with the same de-

CHAPTER 25 RISK MANAGEMENT 733

Sample risk
table prior to
sorting

Gpwcsg

Think hard about the
software you're about
to build and ask,
yourself, what can go
wrong? (reate your
own list and ask other
members of the team
to do the same.

Impact values:
1—catastrophic
2—ritical
3—marginal
4—negligible

gree of rigor. By prioritizing risks, the team can allocate resources where they will
have the most impact.

25.4.1 Developing a Risk Table

A risk table provides a project manager with a simple technique for risk projection.?
A sample risk table is illustrated in Figure 25.2.

A project team begins by listing all risks (no matter how remote) in the first col-
umn of the table. This can be accomplished with the help of the risk item checklists
referenced in Section 25.3. Eachrisk is categorized in the second column (e.g., PS im-
plies a project size risk, BU implies a business risk). The probability of occurrence of
each risk is entered in the next column of the table. The probability value for each risk
can be estimated by team members individually. Individual team members are polled
in round-robin fashion until their assessment of risk probability begins to converge.

Next, the impact of each risk is assessed. Each risk component is assessed using
the characterization presented in Figure 25.1, and an impact category is determined.
The categories for each of the four risk components—performance, support, cost,
and schedule—are averaged? to determine an overall impact value.

2 The risk table can be implemented as a spreadsheet model. This enables easy manipulation and
sorting of the entries.
3 A weighted average can be used if one risk component has more significance for a project

734

%,
POINT

A sk table is sorted by

probability and impact

to rank risks.

PART FOUR MANAGING SOFTWARE PROJECTS

Once the first four columns of the risk table have been completed, the table is
sorted by probability and by impact. High-probability, high-impact risks percolate to
the top of the table, and low-probability risks drop to the bottom. This accomplishes
first-order risk prioritization.

The project manager studies the resultant sorted table and defines a cutoff line.
The cutoff line (drawn horizontally at some point in the table) implies that only risks
that lie above the line will be given further attention. Risks that fall below the line are
reevaluated to accomplish second-order prioritization. Referring to Figure 25.3, risk
impact and probability have a distinct influence on management concern. A risk fac-
tor that has a high impact but a very low probability of occurrence should not absorb
a significant amount of management time. However, high-impact risks with moder-
ate to high probability and low-impact risks with high probability should be carried
forward into the risk analysis steps that follow.

All risks that lie above the cutoff line must be managed. The column labeled
RMMM contains a pointer into a Risk Mitigation, Monitoring, and Management Plan or
alternatively, a collection of risk information sheets developed for all risks that lie
above the cutoff. The RMMM plan and risk information sheets are discussed in Sec-
tions 25.5 and 25.6.

10 one has the luxury of getting to know a fask so well that it holds no surprises, and surprises mean risk.”
- Stephen Grey

Risk probability can be determined by making individual estimates and then de-
veloping a single consensus value. Although that approach is workable, more so-

Risk and
management
concern

Very high

Impact

Disregard E e

risk factor High

Management
concern

Very low

Probability

of occurrence

How do we
® assess the
consequences of a
risk?

CHAPTER 25 RISK MANAGEMENT 735

phisticated techniques for determining risk probability have been developed
[AFC88]. Risk drivers can be assessed on a qualitative probability scale that has the
following values: impossible, improbable, probable, and frequent. Mathematical
probability can then be associated with each qualitative value (e.g., a probability of
0.7 to 0.95 implies a highly probable risk).

25.4.2 Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature,
scope, and timing. The nature of the risk indicates the problems that are likely if it oc-
curs. For example, a poorly defined external interface to customer hardware (a techni-
cal risk) will preclude early design and testing and will likely lead to system integration
problems late in a project. The scope of a risk combines the severity (just how serious
is it?) with its overall distribution (how much of the project will be affected, or how
many customers are harmed?). Finally, the timing of a risk considers when and for how
long the impact will be felt. In most cases, a project manager might want the “bad
news” to occur as soon as possible, but in some cases, the longer the delay, the better.

Returning once more to the risk analysis approach proposed by the U.S. Air Force
[AFC88], the following steps are recommended to determine the overall conse-
quences of a risk:

1. Determine the average probability of occurrence value for each risk
component.

2. Using Figure 25.1, determine the impact for each component based on the
criteria shown.

3. Complete the risk table and analyze the results as described in the preceding
sections.

The overall risk exposure, RE, is determined using the following relationship
[HAL98]:

RE=PXC

where P is the probability of occurrence for a risk, and C is the cost to the project
should the risk occur.

For example, assume that the software team defines a project risk in the follow-
ing manner:

Risk identification. Only 70 percent of the software components scheduled for
reuse will, in fact, be integrated into the application. The remaining functionality
will have to be custom developed.

Risk probability. 80 percent (likely).

Risk impact. 60 reusable software components were planned. If only 70 per-
cent can be used, 18 components would have to be developed from scratch (in
addition to other custom software that has been scheduled for development). Since

736 PART FOUR MANAGING SOFTWARE PROJECTS

the average component is 100 LOC and local data indicate that the software engi-
neering cost for each LOC is $14.00, the overall cost (impact) to develop the com-
ponents would be 18 x 100 X 14 = $25,200.

Risk exposure. RE = 0.80 x 25,200 ~ $20,200.
Risk exposure can be computed for each risk in the risk table, once an estimate of
ADVKE’

the cost of the risk is made. The total risk exposure for all risks (above the cutoff line
Compare RE for all in the risk table) can provide a means for adjusting the final cost estimate for a proj-

ﬂsf,-f,, mremfi c;’;é ect. It can also be used to predict the probable increase in staff resources required at
esnmate for

project, If RE s grogter VATIOUS points during the project schedule.

than 50 percent of the The risk projection and analysis techniques described in Sections 25.4.1 and
project cost, the 25.4.2 are applied iteratively as the software project proceeds. The project team

viabity of the profect should revisit the risk table at regular intervals, reevaluating each risk to determine
must be reevaluated. . : . .
when new circumstances cause its probability and impact to change. As a conse-
quence of this activity, it may be necessary to add new risks to the table, remove
some risks that are no longer relevant, and change the relative positions of others.

SAFEHOME

“Doug Miller's office, prior
software project.

Doug: Okay, siop. Now’ "3'
white boord I'" doﬂwwnhng

Jamie (pbinﬁng ai t
Vinod,; that risk {pointing %

just callthem out |s rlduculous There's a-highy

V{é'ci do, Everyone

; ' again fomorrow. Fofnow géfbudﬁ
na perm likelihood that the your spare time, think about any risks

describe a risk?

CHAPTER 25 RISK MANAGEMENT 737

During early stages of project planning, a risk may be stated quite generally. As time
passes and more is learned about the project and the risk, it may be possible to re-
fine the risk into a set of more detailed risks, each somewhat easier to mitigate, mon-
itor, and manage.

One way to do this is to represent the risk in condition-transition-consequence
(CTC) format [GLU94]. That is, the risk is stated in the following form:

Given that <condition> then there is concern that (possibly) <consequence>.

Using the CTC format for the reuse risk noted in Section 25.4.2, we can write:

Given that all reusable software components must conform to specific design
standards and that some do not conform, then there is concern that (possibly) only 70
percent of the planned reusable modules may actually be integrated into the as-built
system, resulting in the need to custom engineer the remaining 30 percent of
components.

This general condition can be refined in the following manner:

Subcondition 1. Certain reusable components were developed by a third party with no
knowledge of internal design standards.

Subcondition 2. The design standard for component interfaces has not been solidified
and may not conform to certain existing reusable components.

Subcondition 3. Certain reusable components have been implemented in a language
that is not supported on the target environment.

The consequences associated with these refined subconditions remain the same
(i.e., 30 percent of software components must be custom engineered), but the re-
finement helps to isolate the underlying risks and might lead to easier analysis and
response.

All of the risk analysis activities presented to this point have a single goal—to assist
the project team in developing a strategy for dealing with risk. An effective strategy
must consider three issues:

¢ Risk avoidance.

e Risk monitoring.

e Risk management and contingency planning.
If a software team adopts a proactive approach to risk, avoidance is always the best
strategy. This is achieved by developing a plan for risk mitigation. For example, as-

sume that high staff turnover is noted as a project risk, r,. Based on past history and
management intuition, the likelihood, /,, of high turnover is estimated to be 0.70 (70

738

% What can
we do to

mitigate a risk?

PART FOUR MANAGING SOFTWARE PROJECTS

percent, rather high) and the impact, x,, is projected as critical. That is, high turnover
will have a critical impact on project cost and schedule.

" o many precautions, it is because | leave nothing fo chance.”

To mitigate this risk, project management must develop a strategy for reducing
turnover. Among the possible steps to be taken are:

e Meet with current staff to determine causes for turnover (e.g., poor working
conditions, low pay, competitive job market).

o Mitigate those causes that are under our control before the project starts.

e Once the project commences, assume turnover will occur and develop tech-
niques to ensure continuity when people leave.

o Organize project teams so that information about each development activity
is widely dispersed.

¢ Define documentation standards and establish mechanisms to ensure that
documents are developed in a timely manner.

e Conduct peer reviews of all work (so that more than one person is “up to
speed”).

e Assign a backup staff member for every critical technologist.

As the project proceeds, risk monitoring activities commence. The project manager
monitors factors that may provide an indication of whether the risk is becoming
more or less likely. In the case of high staff turnover, the following factors can be
monitored:

e General attitude of team members based on project pressures.
e The degree to which the team has jelled.

o Interpersonal relationships among team members.

o Potential problems with compensation and benefits.

o The availability of jobs within the company and outside it.

In addition to monitoring these factors, a project manager should monitor the effec-
tiveness of risk mitigation steps. For example, a risk mitigation step noted earlier
called for the definition of documentation standards and mechanisms to be sure that
documents are developed in a timely manner. This is one mechanism for ensuring
continuity, should a critical individual leave the project. The project manager should
monitor documents carefully to ensure that each can stand on its own and that each
imparts information that would be necessary if a newcomer were forced to join the
software team somewhere in the middle of the project.

Gpwcs‘

If RE for a specific risk
is less than the cost of
risk mitigation, don’t
try to mitigate the risk
but confinue fo
monitor it.

containing g ofl enfries
from the ACM Forum
on Risks o the Public
can be found ot
catless.ad.ocvk/
Risks. -

CHAPTER 25 RISK MANAGEMENT 739

Risk management and contingency planning assumes that mitigation efforts
have failed and that the risk has become a reality. Continuing the example, the proj-
ect is well underway, and a number of people announce that they will be leaving.
If the mitigation strategy has been followed, backup is available, information is
documented, and knowledge has been dispersed across the team. In addition, the
project manager may temporarily refocus resources (and readjust the project
schedule) to those functions that are fully staffed, enabling newcomers who must
be added to the team to “get up to speed.” Those individuals who are leaving are
asked to stop all work and spend their last weeks in “knowledge transfer mode.”
This might include video-based knowledge capture, the development of “com-
mentary documents,” and/or meeting with other team members who will remain
on the project.

It is important to note that risk mitigation, monitoring, and management
(RMMM) steps incur additional project cost. For example, spending the time to
“backup” every critical technologist costs money. Part of risk management, there-
fore, is to evaluate when the benefits accrued by the RMMM steps are outweighed
by the costs associated with implementing them. In essence, the project planner
performs a classic cost/benefit analysis. If risk aversion steps for high turnover
will increase both project cost and duration by an estimated 15 percent, but the
predominant cost factor is “backup,” management may decide not to implement
this step. On the other hand, if the risk aversion steps are projected to increase
costs by 5 percent and duration by only 3 percent, management will likely put all
into place.

For a large project, 30 or 40 risks may be identified. If between three and seven
risk management steps are identified for each, risk management may become a proj-
ect in itself! For this reason, we adapt the Pareto 80-20 rule to software risk. Experi-
ence indicates that 80 percent of the overall project risk (i.e., 80 percent of the
potential for project failure) can be accounted for by only 20 percent of the identified
risks. The work performed during earlier risk analysis steps will help the planner to
determine which of the risks reside in that 20 percent (e.g., risks that lead to the high-
est risk exposure). For this reason, some of the risks identified, assessed, and pro-
jected may not make it into the RMMM plan—they don't fall into the critical 20
percent (the risks with highest project priority).

Risk is not limited to the software project itself. Risks can occur after the software
has been successfully developed and delivered to the customer. These risks are typ-
ically associated with the consequences of software failure in the field.

Software safely and hazard analysis [LEV95] are software quality assurance activi-
ties (Chapter 26) that focus on the identification and assessment of potential hazards
that may affect software negatively and cause an entire system to fail. If hazards can
be identified early in the software engineering process, software design features can
be specified that will either eliminate or control potential hazards.

740

PART FOUR MANAGING SOFTWARE PROJECTS

Risk informa-
tion sheet
[WIL97]

A risk management strategy can be included in the software project plan or the risk
management steps can be organized into a separate Risk Mitigation, Monitoring and
Management Plan. The RMMM plan documents all work performed as part of risk
analysis and is used by the project manager as part of the overall project plan.

Some software teams do not develop a formal RMMM document. Rather, each
risk is documented individually using a risk information sheet (RIS) [WIL97]. In most
cases, the RIS is maintained using a database system, so that creation and informa-
tion entry, priority ordering, searches, and other analysis may be accomplished eas-
ily. The format of the RIS is illustrated in Figure 25.4.

Once RMMM has been documented and the project has begun, risk mitigation and
monitoring steps commence. As we have already discussed, risk mitigation is a
problem avoidance activity. Risk monitoring is a project tracking activity with three

Risk information sheet

Risk ID: P02-4-32 Date: 5/9/04 Prob: 80% Impact: high

Description:

Only 70 percent of the software components scheduled for reuse will, in fact, be
integrated into the application. The remaining functionality will have to be custom
developed.

Refinement/context:

Subcondition 1: Cerfain reusable components were developed by a third party
with no knowledge of internal design standards.

Subcondition 2: The design standard for component interfaces has not been
solidified and may not conform to certain existing reusable components.
Subcondition 3: Certain reusable components have been implemented in o
language that is not supported on the target environment.

Mitigation/monitoring:

1. Contact third party to determine conformance with design standards.

2. Press for interface standards completion; consider component structure when
deciding on interface protocol.

3. Check to determine number of components in subcondition 3 category; check
to determine if language support can be acquired.

Management/contingency plan/trigger:
RE computed to be $20,200. Allocate this amount within project contingency cost.
Develop revised schedule assuming that 18 additional components will have to be
custom built; allocate staff accordingly.

Trigger: Mitigation steps unproductive as of 7/1/04

Current status:
5/12/04: Mitigation steps initiated.

Originator: D. Gagne Assigned: B. Laster

CHAPTER 25 RISK MANAGEMENT

primary objectives: (1) to assess whether predicted risks do, in fact, occur; (2) to en-
sure that risk aversion steps defined for the risk are being properly applied; and (3) to
collect information that can be used for future risk analysis. In many cases, the prob-
lems that occur during a project can be traced to more than one risk. Another job of
risk monitoring is to attempt to allocate origin (what risk(s) caused which problems

throughout the project).

- Risk Management
Q
_4 Obijective: The objective of risk management

tools is to assist a project team in defining risks,
assessing their impact and probability, and tracking risks
throughout a software project.

Mechanics: In general, risk management tools assist in
generic risk identification by providing a list of typical
project and business risks, providing checklists or other
“interview” techniques that assist in identifying project
specific risks, assigning probability and impact to each
risk, supporting risk mitigation strategies, and generating
many different risk-related reports.

Representative Tools*

Riskman, deve|oped at Arizona State University (www.eas.
asu.edu/~sdm/merrill /riskman.html), is a risk
evaluation expert system that identifies project-related

\ risks.

SorTWARE TooLs

Risk Radar, developed by SPMN (www.spmn.com), assists
project managers in identifying and managing project
risks.

RiskTrak, developed by RST (www.risktrac.com), supports
the identification, andlysis, reporting, and
management of risks throughout a software project.

Risk+, developed by C/S Solutions (www.CS-
solutions.com), integrates with Microsoft Project to
quantify cost and schedule uncertainty.

X:PRIMER, developed by GrafP Technologies
(www.grafp.com), is a generic Web-based tool that
predicts what can go wrong on a project and identfifies
root causes for potential failures and effective
countermeasures.

J

—22.8 SUMMARY

Whenever a lot is riding on a software project, common sense dictates risk analysis.
And yet, most software project managers do it informally and superficially, if they do
it at all. The time spent identifying, analyzing, and managing risk pays itself back in
many ways: less upheaval during the project, a greater ability to track and control a
project, and the confidence that comes with planning for problems before they occur.

Risk analysis can absorb a significant amount of project planning effort. Identifi-
cation, projection, assessment, management, and monitoring all take time. But the
effort is worth it. To quote Sun Tzu, a Chinese general who lived 2500 years ago, “If
you know the enemy and know yourself, you need not fear the result of a hundred
battles.” For the software project manager, the enemy is risk.

4 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.

742

PART FOUR MANAGING SOFTWARE PROJECTS

[AFC88] Software Risk Abatement, AFCS/AFLC Pamphlet 800-45, U.S. Air Force, September 30,
1988.

[BOE89] Boehm, B. W., Software Risk Management, IEEE Computer Society Press, 1989.

[CHA89] Charette, R. N., Software Engineering Risk Analysis and Management, McGraw-Hill/
Intertext, 1989.

[CHA92] Charette, R. N., “Building Bridges over Intelligent Rivers,” American Programmer, vol. 5,
no. 7, September, 1992, pp. 2-9.

[DRU75] Drucker, P., Management, W. H. Heinemann, 1975.

[GIL88] Gilb, T., Principles of Software Engineering Management, Addison-Wesley, 1988.

[GLU94] Gluch, D. P, “A Construct for Describing Software Development Risks,” CMU/SEI-94-
TR- 14, Software Engineering Institute, 1994.

[HAL98] Hall, E. M., Managing Risk: Methods for Software Systems Development, Addison-Wesley,
1998.

[HIG95] Higuera, R. P., “Team Risk Management,” CrossTalk, U.S. Dept. of Defense, January 1995,
pp. 2-4.

[KAR96] Karolak, D. W., Software Engineering Risk Management, IEEE Computer Society Press,
1996.

[KEI98] Keil, M., et al., “A Framework for identifying Software Project Risks,” CACM, vol. 41,
no. 1, November 1998, pp. 76-83.

[LEV95] Leveson, N. G., Safeware: System Safety and Computers, Addison-Wesley, 1995.

[SEI93] “Taxonomy-Based Risk Identification,” Software Engineering Institute, CMU/SEI-93-TR-6,
1993.

[THO92] Thomsett, R., “The Indiana Jones School of Risk Management,” American Programmer,
vol. 5, no. 7, September 1992, pp. 10-18.

[WIL97] Williams, R. C.,). A. Walker, and A. J. Dorofee, “Putting Risk Management into Practice,”
IEEE Software, May 1997, pp. 75-81.

25.1. Develop a risk monitoring strategy and specific risk monitoring activities for three of the
risks noted in Figure 25.2. Be sure to identify the factors that you'll be monitoring to determine
whether the risk is becoming more or less likely.

25.2. You've been asked to build software to support a low-cost video editing system. The sys-
tem accepts digital video as input, stores the video on disk, and then allows the user to do a wide
range of edits to the digitized video. The result can then be output to DVD or other media. Do a
small amount of research on systems of this type, and then make a list of technology risks that
you would face as you begin a project of this type.

25.3. Add three additional questions or topics to each of the risk item checklists presented at
the SEPA Web site.

25.4. Develop a risk mitigation strategy and specific risk mitigation activities for three of the
risks noted in Figure 25.2.

25.5. Provide five examples from other fields that illustrate the problems associated with a re-
active risk strategy.

25.6. Describe the difference between "known risks” and “predictable risks.”
25.7. Describe the difference between risk components and risk drivers.

25.8. You're the project manager for a major software company. You've been asked to lead a
team that’s developing “next generation” word-processing software. Create a risk table for the
project.

CHAPTER 25 RISK MANAGEMENT) 743

25.9. Attempt to refine three of the risks noted in Figure 25.2 and then create risk information
sheets for each.

25.10. Can you think of a situation in which a high-probability, high-impact risk would not be
considered as part of your RMMM plan?

25.11. Represent three of the risks noted in Figure 25.2 using a CTC format.

25.12. Recompute the risk exposure discussed in Section 25.4.2 when cost/LOC is $16 and the
probability is 60 percent.

25.13. Develop a risk management strategy and specific risk management activities for three
of the risks noted in Figure 25.2.

25.14. Describe five software application areas in which software safety and hazard analysis
would be a major concern.

The software risk management literature has expanded significantly over the past decade. De-
Marco and Lister (Dancing with Bears, Dorset House, 2003) have written an entertaining and in-
sightful book that guides software managers and practitioners through risk management.
Moynihan (Coping with IT/IS Risk Management, Springer-Verlag, 2002) presents pragmatic advice
from project managers who deal with risk on a continuing basis. Royer (Project Risk Management,
Management Concepts, 2002) and Smith and Merritt (Proactive Risk Management, Productivity
Press, 2002) suggest a proactive process for risk management. Karolak(Software Engineering Risk
Management, Wiley, 2002) has written a guidebook that introduces an easy-to-use risk analysis
model with worthwhile checklists and questionnaires supported by a software package.

Schuyler (Risk and Decision Analysis in Projects, PMI, 2001) considers risk analysis from a sta-
tistical perspective. Hall (Managing Risk: Methods for Software Systems Development, Addison-
Wesley, 1998) presents one of the more thorough treatments of the subject. Myerson (Risk
Management Processing for Software Engineering Models, Artech House, 1997) considers metrics,
security, process models and other topics. A useful snapshot of risk assessment has been writ-
ten by Grey (Practical Risk Assessment for Project Management, Wiley, 1995). His abbreviated treat-
ment provides a good introduction to the subject.

Capers Jones (Assessment and Control of Software Risks, Prentice-Hall, 1994) presents a de-
tailed discussion of software risks that includes data collected from hundreds of software proj-
ects. Jones defines 60 risk factors that can affect the outcome of software projects. Boehm
[BOE89] suggests excellent questionnaire and checklist formats that can prove invaluable in
identifying risk. Charette [CHA89] presents a detailed treatment of the mechanics of risk analy-
sis, calling on probability theory and statistical techniques to analyze risks. In a companion vol-
ume, Charette (Application Strategies for Risk Analysis, McGraw-Hill, 1990) discusses risk in the
context of both system and software engineering and suggests pragmatic strategies for risk
management. Gilb (Principles of Software Engineering Management, Addison-Wesley, 1988)
presents a set of “principles” (which are often amusing and sometimes profound) that can serve
as a worthwhile guide for risk management.

Ewusi-Mensah (Software Development Failures: Anatomy of Abandoned Projects, MIT Press,
2003) and Yourdon (Death March, Prentice-Hall, 1997) discuss what happens when risks over-
whelm a software project team. Bernstein (Against the Gods, Wiley, 1998) presents an enter-
taining history of risk that goes back to ancient times.

The Software Engineering Institute has published many detailed reports and guidebooks on
risk analysis and management. The Air Force Systems Command pamphlet AFSCP 800-45
[AFC88] describes risk identification and reduction techniques. Every issue of the ACM Software
Engineering Notes has a section entitled “Risks to the Public” (editor, P. G. Neumann). If you want
the latest and best software horror stories, this is the place to go.

A wide variety of information sources on software risk management is available on the In-
ternet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

KEey
CONCEPTS
cost of quality
defect amplification
defect costs

IS0 9001: 2000
rolablity

reviews (FTRs)
quality

quakity control
sompling

six sigma
software safety
SQA Plan
statistical SQA

744

sequence, the qu

engineering process is

QUALITY
MANAGEMENT

he software engineering approach described in this book works toward a
single goal: to produce high-quality software. Yet many readers will be
challenged by the question: What is software quality?
Philip Crosby [CRO79}, in his landmark book on quality, provides a wry answer
to this question:

The problem of quality management is not what people don’t know about it. The prob-
lem is what they think they do know . . .

In this regard, quality has much in common with sex. Everybody is for it. (Under
certain conditions, of course.) Everyone feels they understand it. (Even though they
wouldn't want to explain it.) Everyone thinks execution is only a matter of following
natural inclinations. (After all, we do get along somehow.) And, of course, most peo-
ple feel that problems in these areas are caused by other people. (If only they would
take the time to do things right.)

Some software developers continue to believe that software quality is some-
thing you begin to worry about after code has been generated. Nothing could be
further from the truth! Quality management (often called software quality assurance)
is an umbrella activity (Chapter 2) that is applied throughout the software process.

Quality management encompasses (1) a software quality assurance (SQA)
process; (2) specific quality assurance and quality control tasks (including formal
technical reviews and a multitiered testing strategy); (3) effective software engi-
neering practice (methods and tools); (4) control of all software work products

fou can do it right, or
«a software team
engineering activ-
 of rework that it must

745

CHAPTER 26 QUALITY MANAGEMENT

and the changes made to them (Chapter 27); (5) a procedure to ensure compliance
with software development standards (when applicable), and (6) measurement and
reporting mechanisms.

In this chapter, we focus on the management issues and the process-specific ac-
tivities that enable a software organization to ensure that it does the right things at
the right time in the right way.

n
Ve,
POINT
Controlling variation
is the key to a high-
quality product. In the
software confext, we
strive fo confrol the
varigtion in the generic
process we apply and
the quality emphasis
that permeates
software engineering
work.

Variation control is the heart of quality control. A manufacturer wants to minimize the
variation among the products that are produced, even when doing something rela-
tively simple like duplicating DVDs. Surely, this cannot be a problem—duplicating
DVDs is a trivial manufacturing operation, and we can guarantee that exact dupli-
cates of the software are always created.

Or can we? We need'to ensure the tracks are placed on the DVDs within a speci-
fied tolerance so that the overwhelming majority of DVD drives can read the media.

* The disk duplication machines can, and do, wear and go out of tolerance. So even a

“simple” process such as DVD duplication may encounter problems due to variation
between samples.

But how does this apply to software work? How might a software development
organization need to control variation? From one project to another, we want to
minimize the difference between the predicted resources needed to complete a proj-
ect and the actual resources used, including staff, equipment, and calendar time. In
general, we would like to make sure our testing program covers a known percent-
age of the software, from one release to another. Not only do we want to minimize
the number of defects that are released to the field, we'd like to ensure that the vari-
ance in the number of bugs is also minimized from one release to another. (Our cus-
tomers will likely be upset if the third release of a product has 10 times as many

1 This section, written by Michael Stovsky, has been adapted from “Fundamentals of ISO 9000," a
workbook developed for Essential Software Engineering, a video curriculum developed by R. S.
Pressman & Associates, Inc. Reprinted with permission.

746

. What is
software
quality control?

PART FOUR MANAGING SOFTWARE PROJECTS

defects as the previous release.) We would like to minimize the differences in speed
and accuracy of our hotline support responses to customer problems. The list goes
on and on.

26.1.1 Quality

The American Heritage Dictionary defines quality as “a characteristic or attribute of
something.” As an attribute of an item, quality refers to measurable characteristics—
things we can compare to known standards such as length, color, electrical proper-
ties, and malleability. However, software, largely an intellectual entity, is more
challenging to characterize than physical objects.

Nevertheless, measures of a program'’s characteristics do exist. These properties
include cyclomatic complexity, cohesion, number of function points, lines of code,
and many others discussed in Chapter 15. When we examine an item based on its
measurable characteristics, two kinds of quality may be encountered: quality of de-
sign and quality of conformance.

Quality of design refers to the characteristics that designers specify for an item.
Quudlity of conformance is the degree to which the design specifications are followed
during manufacturing.

"Pupbfomethw fast you did a job—but they always remember how well you did it.”

Howard Newton

In software development, quality of design encompasses requirements, specifica-
tions, and the design of the system. Quality of conformance is an issue focused primarily
on implementation. If the implementation follows the design and the resulting system
meets its requirements and performance goals, conformance quality is high.

But are quality of design and quality of conformance the only issues that software
engineers must consider? Robert Glass [GLA98] argues that a more “intuitive” rela-
tionship is in order:

user satisfaction = compliant product + good quality
+ delivery within budget and schedule

At the bottom line, Glass contends that quality is important, but if the user isn't sat-
isfied, nothing else really matters. DeMarco [DEM99] reinforces this view when he
states: “A product’s quality is a function of how much it changes the world for the
better.” This view of quality contends that if a software product provides substantial
benefit to its end-users, they may be willing to tolerate occasional reliability or per-
formance problems.

26.1.2 Quality Control

Variation control may be equated to quality control. But how do we achieve quality
control? Quality control involves the series of inspections, reviews, and tests used

Usaful ks o SQA: -~
resources con be found

WWW,

com/links /lndox.

@ What are the
7 components
of the cost of
quality?

Gpwc:‘

Don’t be afraid to incur
significant prevention
cosfs. Rest assured
that your investment
will provide an
excellent return.

CHAPTER 26 QUALITY MANAGEMENT 747

throughout the software process to ensure each work product meets the require-
ments placed upon it. Quality control includes a feedback loop to the process that
created the work product. The combination of measurement and feedback allows us
to tune the process when the work products created fail to meet their specifications.

A key concept of quality control is that all work products have defined, measura-
ble specifications to which we may compare the output of each process. The feed-
back loop is essential to minimize the defects produced.

26.1.3 Quality Assurance

Quality assurance consists of a set of auditing and reporting functions that assess the
effectiveness and completeness of quality control activities. The goal of quality as-
surance is to provide management with the data necessary to be informed about
product quality, thereby gaining insight and confidence that product quality is meet-
ing its goals. Of course, if the data provided through quality assurance identify pro-
blems, it is management'’s responsibility to address the problems and apply the
necessary resources to resolve quality issues.

26.1.4 Cost of Quality

The cost of quality includes all costs incurred in the pursuit of quality or in perform-
ing quality-related activities. Cost of quality studies are conducted to provide a base-
line for the current cost of quality, identify opportunities for reducing the cost of
quality, and provide a normalized basis of comparison. The basis of normalization is
almost always dollars. Once we have normalized quality costs on a dollar basis, we
have the necessary data to evaluate where the opportunities lie to improve our
processes. Furthermore, we can evaluate the effect of changes in dollar-based terms.

Quality costs may be divided into costs associated with prevention, appraisal, and
failure. Prevention costs include quality planning, formal technical reviews, test equip-
ment, and training. Appraisal costs include activities to gain insight into product con-
dition the “first time through” each process. Examples of appraisal costs include
in-process and interprocess inspection, equipment calibration and maintenance, and
testing.

Failure costs are those that would disappear if no defects appeared before ship-
ping a product to customers. Failure costs may be subdivided into internal failure
costs and external failure costs. Internal failure costs are incurred when we detect a
defect in our product prior to shipment. Internal failure costs include rework, repair,
and failure mode analysis. External failure costs are associated with defects found af-
ter the product has been shipped to the customer. Examples of external failure costs
are complaint resolution, product return and replacement, help line support, and
warranty work.

As expected, the relative costs to find and repair a defect increase dramatically
as we go from prevention to detection to internal failure to external failure costs.

748 PART FOUR MANAGING SOFTWARE PROJECTS

. 1000 |*
Relative cost of
correcting an .
error g
o
e 100 |
-}
o
£
¢
1
g 10
b
-}
]
]
v
P
E
S
[])
(-]

Reg. Design Code Dev. System Field
test test operation

Figure 26.1, based on data collected by Boehm [BOE81] and others, illustrates this
phenomenon.

hhkes Jess time fo do a thing right than to explain why you did it wrong.”

H. W. Longfellow

Even the most jaded software developers will agree that high-quality software is an
important goal. But how do we define quality? A wag once said, “Every program does
something right, it just may not be the thing that we want it to do.”

Many definitions of software quality have been proposed in the literature. For our
purposes, software quality is defined as:

Conformance to explicitly stated functional and performance requirements, explicitly

How do we
define documented development standards, and implicit characteristics that are expected of all

software quality? professionally developed software.

There is little question that this definition could be modified or extended. In fact, the
definition of software quality could be debated endlessly. For the purposes of this
book, this definition serves to emphasize three important points:

1. Software requirements are the foundation from which quality is measured.
Lack of conformance to requirements is lack of quality.

2. Specified standards define a set of development criteria that guide the man-
ner in which software is engineered. If the criteria are not followed, lack of
quality will almost surely result.

CHAPTER 26 QUALITY MANAGEMENT 749

3. A set of implicit requirements often goes unmentioned (e.g., the desire for ease
of use and good maintainability). If software conforms to its explicit require-
ments but fails to meet implicit requirements, software quality is suspect.

26.2.1 Background Issues

Quality control and assurance are essential activities for any business that produces
products to be used by others. Prior to the twentieth century, quality control was the
sole responsibility of the craftsperson who built a product. The first formal quality as-
surance and control function was introduced at Bell Labs in 1916 and spread rapidly
throughout the manufacturing world. During the 1940s, more formal approaches to
quality control were suggested. These relied on measurement and continuous
process improvement {DEM86] as key elements of quality management.

“You made oo many wrong mistakes.”

Today, every company has mechanisms to ensure quality in its products. In fact,
explicit statements of a company's concern for quality have become a marketing
ploy during the past few decades.

The history of quality assurance in software development parallels the history of
quality in hardware manufacturing. During the early days of computing {1950s and
1960s), quality was the sole responsibility of the programmer. Standards for quality
assurance for software were introduced in military contract software development
during the 1970s and have spread rapidly into software development in the com-
mercial world {IEE94]. Extending the definition presented earlier, software quality
assurance is a “planned and systematic pattern of actions” [SCH98] that are required
to ensure high quality in software. Many different constituencies have software qual-
ity assurance responsibility—software engineers, project managers, customers,
salespeople, and the individuals who serve within an SQA group.

The SQA group serves as the customer’s in-house representative. That is, the peo-
ple who perform SQA must look at the software from the customer’s point of view.
Does the software adequately meet the quality factors noted in Chapter 15? Has soft-
ware development been conducted according to preestablished standards? Have
technical disciplines properly performed their roles as part of the SQA activity? The
SQA group attempts to answer these and other questions to ensure that software
quality is maintained.

26.2.2 SQA Activities

Software quality assurance is composed of a variety of tasks associated with two dif-
ferent constituencies—the software engineers who do technical work and an SQA
group that has responsibility for quality assurance planning, oversight, record keep-
ing, analysis, and reporting.

750

' What is the
role of an

SQA group?

PART FOUR MANAGING SOFTWARE PROJECTS

Software engineers address quality (and perform quality assurance and quality
control activities) by applying solid technical methods and measures, conducting for-
mal technical reviews, and performing well-planned software testing. Only reviews
are discussed in this chapter. Technology topics are discussed in Parts 1, 2, 3, and 5
of this book.

The charter of the SQA group is to assist the software team in achieving a high-
quality end product. The Software Engineering Institute recommends a set of SQA
activities that address quality assurance planning, oversight, record keeping, analy-
sis, and reporting. These activities are performed (or facilitated) by an independent
SQA group that conducts the following activities:

Prepares an SQA plan for a project. The plan is developed during project plan-
ning and is reviewed by all stakeholders. Quality assurance activities performed by
the software engineering team and the SQA group are governed by the plan. The
plan identifies evaluations to be performed, audits and reviews to be performed,
standards that are applicable to the project, procedures for error reporting and track-
ing, documents to be produced by the SQA group, and amount of feedback provided
to the software project team.

Participates in the development of the project’s software process descrip-
tion. The software team selects a process for the work to be performed. The SQA
group reviews the process description for compliance with organizational policy, in-
ternal software standards, externally imposed standards (e.g., 1ISO-9001), and other
parts of the software project plan.

Reviews software engineering activities to verify compliance with the de-
fined software process. The SQA group identifies, documents, and tracks devi-
ations from the process and verifies that corrections have been made.

Audits designated software work products to verify compliance with those
defined as part of the software process. The SQA group reviews selected work
products; identifies, documents, and tracks deviations; verifies that corrections have
been made; and periodically reports the results of its work to the project manager.

Ensures that deviations in software work and work products are documented
and handled according to a documented procedure. Deviations may be en-
countered in the project plan, process description, applicable standards, or technical
work products.

Records any noncompliance and reports to senior management. Noncom-
pliance items are tracked until they are resolved.

In addition to these activities, the SQA group coordinates the control and
management of change (Chapter 27) and helps to collect and analyze software
metrics.

